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The theory of generalized functions is used to obtain dynamic analogues of Somigliana’s formula for 

the unsteady dynamics of linear elastic homogeneous anisotropic media. Regular integral representa- 

tions of these analogues are constructed for the solutions of boundary-value problems of the theory of 

elasticity with homogeneous initial data. Analytic formulae are proposed for the kernels of the integral 
equations in the case of plane strain for orthotropic media. 

Constructions of boundary integral equations for solving static and dynamic boundary-value problems 
use either Somigliana’s formula, which relates the displacements inside a region to the boundary values of 
the displacements and the loads, or a dynamic analogue of Somigliana’s formula. The derivation of these 
formulae in Nowacki’s well-known monograph [l] is based on the Betti reciprocity theorem. We derived 

a dynamic analogue of Somigliana’s formula using the theory of generalized functions [2]. Since the 

dynamic tensor of fundamental stresses contains non-integrable singularities on the wave fronts, it was 
necessary to regularize integrals involving such kernels. The problem of regularizing divergent integrals 

with point singularities was considered, e.g. in [3]. However, regularization of integral equations with 
singularities on surfaces, as in the theory of boundary-value problems for hyperbolic equations, was first 
considered in [4]. The case of isotropic media was investigated in [S]. Numerical computations have 
shown that this regularization technique is convenient for weakly anisotropic media, but presents 
difficulties for media with strong anisotropy because such media may contain lacunas. We propose here 
an alternative regular representation, which enables media with an arbitrary degree of anisotropy to be 
considered. 

1. STATEMENT OF THE PROBLEM 

Consider a homogeneous elastic anisotropic medium under conditions of plane strain. The equations 
of motion for such a medium are 

(1.1) 
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where p is the density of the medium, Gi are the components of the vector of body forces, and C+,, are the 
elastic constants of the medium, which constitute a tensor of rank 4 whose indices may be permuted in 
accordance with the symmetry properties indicated above. Here and below, like-numbered indices 
indicate summation from 1 to 2. 

It is assumed that the domain D is bounded by a Lyapunov contour S [6]. The positive direction along 
S is chosen so that the medium D should always remain on the left. 

We will be concerned with the second boundary-value problem, i.e. we seek a solution of Eqs (1.1) for 
prescribed boundary values of the non-stationary load vector, which we denote by a function g,(x, t) 
assumed to be bounded for any (x , t) E S x [0, -) 

gi(xvr)=oij(X,t)nj(X) (i,j=1,2) (1.2) 

where n, are the components of the unit vector along the outward normal n to S. The components of the 
vector of displacements the satisfy initial conditions 

amuicx,wq eo=u,~(x) (m=O,l) (1.3) 

The functions rrf(x), u,!(x) (i = 1, 2) belong to the class of continuous and continuously differentiable 
functions in D : u:(x) E C(D), u,!‘(x) E C’(B), and g,(x, r) are piecewise-continuous in 6 x t. 

2. TENSORS OF THE FUNDAMENTAL SOLUTIONS 

We shall consider the system of equations (1.1) in the space of generalized functions D,‘(Z?,) defined in 
the space of compactly supported infinitely differentiable functions D,(e). If G,(x, t)= 6$(x, t) system 
(1.1) may be written in a space of integral transforms- a Fourier transformation with respect to the 
variable x and a Laplace transformation with respect to the variable t-as follows: 

I&i~,p)q(~,p)+6: =o 

&j C&I 42 ,p) = CimjllSmSl - PP261 

(2.1) 

where L&, p) are homogeneous polynomials of degree 2 corresponding to the differential operators in 

(l.l), and 5 = (&, 5,) and P are the parameters of the transforms. 
The dynamic Green’s tensor Vf(x, t) is a solution of the system of equations (2.1); it is the sum of 

residues of rational functions [7] 

(2.2) 

Q, (u, v, w) 
Rj4(“‘u’w)= Q,(u,v,w)' u=(., u=l, w=(xJ+x,)/t 

Q = QI IQZZ - Q:, 

A comma before an index indicates differentiation with respect to that variable; <,, are the roots of the 
equation 

Q(&lrx,{+xz)=O (2.3) 

Green’s tensor (2.2) satisfies the conditions 
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u(x, r) =O as I ~0. U(x, r) + 0 as lxl+ 00 

In (2.2) the function $(x, t) corresponds to the quasilongitudinal mode, and $(x, t) corresponds to the 
quasitransverse mode. 

The dynamic Green’s tensor UF(x, t) (j, k = 1, 2) of (2.2) generates the tensor of fundamental stresses 

$(x, t) (i, j, k = 1, 2), whose components are determined using Hooke’s law 

Besides Green’s tensor and the tensor of fundamental stresses, we define further tensors 

r~(X-y,r,n)=S~(X-y,r)ni =cij& 

~'(x,t,n)=-r;(x,r.n) (2.4) 

The following properties of Green’s tensor and the tensor of fundamental stresses will be needed later 

U!(x-y,r)=U,L(y-x,0, $(x-y,r)=-$(y-x,r) 

To construct regular representations of the displacements, it is also convenient to introduce the 

following convolution tensors 

Vj(x,r) = U~G(x,r) *6Q(x)N(r) = Uj(x,r)*G(x)H(r) 

@(x.r,n)= q;:“(x.r.n) *&3(x)H(r)= 7f(x,r.n)*G(x)H(r) (2.5) 

where 

tWHW,cpb,r)) = Tp(0.W~. 
0 

It follows from (2.5) that 

In the space of Fourier-Laplace transforms we have 

where 

RjkO(U,U,W) = 2(1”1”;;’ , , 
By the strong hyperbolicity of (l-l), the characteristic equation 

has four pure imaginary roots, in conjugate pairs, which may be written as 

(2.6) 

(2.7) 

pq =il&,, Fe2 tp,, q=1,2 P-8) 

where ci and c, are the velocities of propagation of quasilongitudinal and quasitransverse modes in the 
anisotropic medium. 
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Using the theorem of residues, we determine the inverse Laplace transform with respect to time for the 
tensors V/c, W;’ 

(2.9) 

We have used the substitution p = i I( I c and the fact that Q,, = Q,c 14. 
Clearly, the first terms in (2.9) are the Fourier transforms of the static tensors of fundamental 

displacements V:(‘) and stresses T,‘(‘) [8]. The latter is defined by (2.2) with the dynamic Green’s tensor 
Uk replaced by the static tensor Ui(“. 

Denote the inverse transforms of the second terms in (2.9) by V,fCd) and W:(d), respectively (the 

dynamic components). We have 

(2.10) 

To determine the inverse transform of qt, it will be convenient to change to a polar system of 

coordinate system (5, 0) : 5, = ~cos6, L& = @in& Then, taking into consideration that [9, p. 1031 

(where y is Euler’s constant), we obtain 

Vi”(w) =_&T 4 (ic,)-‘Rj~(cose,sine,c,)ln rcos(e-cp) (118 
rcos(8 - cp) - cpj 

r= XiXi (XI J-- = rcoScp,+ = rSincp) 

For the tensor W,“(x, 1, II) [4] 

(2.11) 

(2.12) 

It follows from the representations (2.11) and (2.12) that 

Vj(KJ)-O(lnr), Wj(x,t,n)-O(r-‘) as r+O (2.13) 

i.e. the asymptotic behaviour of these tensors is determined by that of the static components UF(‘), Tjk(‘) as 

r _j 0. 
These tensors are fundamental solutions of the equations of motion (1.1) with the appropriate singular 

body forces 

Lii a, a, .iL 
ax, ax2 at vjqx,r)+6~6(x)H(r)=0 

L&, &, $) W~(x,t..)+n,C,$S(x)H(r)=O 

(the indices i,j, k,ru, 1 take values 1,2). 
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3. ANALOGUES OF KIRCHHOFF’S AND SOMIGLIANA’S FORMULAE 

Let u(x,t) be a solution of Eqs (1.1) in {Dx t] satisfying the boundary and initial conditions (1.2) and 

(1.3). It has been shown [2] that the generalized function v(x, t)= H(t)H,(x)u(x, t) satisfies the equations 
of motion (1.1) with a singular body force and can be written in the form 

+UikW)** g~(x,t)sS(X)H(t)-Ckjm,~(x,t) **~(",(x,r)nj(x)Ss(x)H(t)) 

F,(w) = HO)H,(x)G,(x,t) 

(3.1) 

A dot over a function indicates differentiation with respect to time, a single asterisk denotes convolu- 

tion of functions of x, and two asterisks convolution of functions of x,f, g,(x, t)6,(x)H(t) is a simple layer 
on the cylinder {S* t), H,(x) is the characteristic function of the set D [8], and ui are the components of 
the vector-valued function v(x, t). 

Because of the presence of strong singularities in the moving wave fronts of the functions Ut,, IJ:,, it is 

not possible to transform (3.1) directly to integral notation. This problem has been considered for 
isotropic elastic media [S]. Regularization of the integrands over the wave fronts enabled an integral form 
of (3.1) to be obtained for anisotropic media [4], and enabled boundary integral equations to be 
constructed for solving our boundary-value problem with homogeneous initial data (1.3) [8] 

u,y(x)=O, m=O,l (3.2) 

However, this regularization is only feasible for media with weak anisotropy, and presents considerable 

difficulties in the case of strongly anisotropic media. The regular representation proposed here eliminates 

this drawback. 
Let us consider the most general anisotropy, including even media with strong anisotropy, in which the 

wave processes typically involve lacunas-moving but undisturbed regions. Such media possess strong 
waveguide properties in certain directions, and their refraction curves are convex+oncave [7]. 

Using differentiation of convolutions, as well as formulae (2.7) and (3.2), we can write (3.1) in the form 

By (3.2), the last term in this expression vanishes. 

The dynamic Green’s tensor (2.2) for an anisotropic medium under plane strain has a weak singularity 

on the moving wave fronts, i.e. the first two terms on the right of (3.3) have weak singularities on the 
wave fronts. By (2.5). the same is true of the tensor y’(x - y, f, n(y)). 

Thus all the convolutions in (3.3) exist. Using (2.10), we obtain 

~~‘(~-y,7,n(y))ic,(y.t-7)d7=T;~“’(x-y,n(y))u,(y,t)+~~“~‘~x-y,~,n(y))~~(y,t-~)~~ 
0 0 

H(t)HD(x)ui(xvt)= ~j~~(~-Y.~)G~(y,t-~)dr~D(y)+~j~~(x-y.~)g,(y,t-~)~~ d’(y)+ 

Do SO 

+Il~~(x-y,.r,n(y))ic,(y,r-r)k 0%~) 
SO 

Thus, if (3.2) is true, relations (3.3) for x e S may be written in integral form as follows: 

Wr)H,(x)ui(xJ)= Ij~~(x-y,7)G,(y,r-.r)d~ dl)(y)+ljo:(x-y.~)Bl(y,t-7)d7 B(Y)+ 

DO DO 
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(3.4) 

Thus, we have ubtbtained a formula that euables us, given the values of the functions u(x, r), uf x, t), g,fx, 
f) on the boundary S, to determine the displacements u(x, r> in D. Formula (3.4) is a dynamic analogue of 
Somigliana’s formula for anisotropic media. 

These formuIae involve generalized functions. By the Du Bois-Reymond lemma [lo], there is a one-to- 
one correspondence between locally integrable functions and regufar generalized funcrions. And since the 

expressions on both sides of the above formulae are regular generalized functions, the eqtzalities are also 

hold in the usual sense for x e S. 
In view of the definition of H,(x), formula (3.4) yields singular integral equations for solving the basic 

non-stationary boundary-value problems of the theory of elasticity for aaisotropic and evi.m strongly 

anisotropic media. 
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